SIFT Flow: Dense Correspondence across Different Scenes
نویسندگان
چکیده
Abstract. While image registration has been studied in different areas of computer vision, aligning images depicting different scenes remains a challenging problem, closer to recognition than to image matching. Analogous to optical flow, where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its neighbors in a large image collection consisting of a variety of scenes. For a query image, histogram intersection on a bag-of-visual-words representation is used to find the set of nearest neighbors in the database. The SIFT flow algorithm then consists of matching densely sampled SIFT features between the two images, while preserving spatial discontinuities. The use of SIFT features allows robust matching across different scene/object appearances and the discontinuity-preserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed approach is able to robustly align complicated scenes with large spatial distortions. We collect a large database of videos and apply the SIFT flow algorithm to two applications: (i) motion field prediction from a single static image and (ii) motion synthesis via transfer of moving objects.
منابع مشابه
Exploring new representations and applications for motion analysis
The focus of motion analysis has been on estimating a flow vector for every pixel by matching intensities. In my thesis, I will explore motion representations beyond the pixel level and new applications to which these representations lead. I first focus on analyzing motion from video sequences. Traditional motion analysis suffers from the inappropriate modeling of the grouping relationship of p...
متن کاملBeyond Pixels: Exploring New Representations and Applications for Motion Analysis
The focus of motion analysis has been on estimating a flow vector for every pixel by matching intensities. In my thesis, I will explore motion representations beyond the pixel level and new applications to which these representations lead. I first focus on analyzing motion from video sequences. Traditional motion analysis suffers from the inappropriate modeling of the grouping relationship of p...
متن کاملRandomized Global Transformation Approach for Dense Correspondence
Motivation Recently, many researchers have begun to attempt to solve dense correspondence problem for more challenging images which have high variability in terms of photometric and/or geometric conditions [4]. For these challenging scenarios, there exist two principal bottlenecks which make conventional methods provide limited performances; (1) photometric variations derived from different cam...
متن کامل4D Match Trees for Non-rigid Surface Alignment
This paper presents a method for dense 4D temporal alignment of partial reconstructions of non-rigid surfaces observed from single or multiple moving cameras of complex scenes. 4D Match Trees are introduced for robust global alignment of non-rigid shape based on the similarity between images across sequences and views. Wide-timeframe sparse correspondence between arbitrary pairs of images is es...
متن کامل3D-SIFT-Flow for atlas-based CT liver image segmentation.
PURPOSE In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT) images. METHODS In the registration work, the authors developed a new registration method that takes advantage of dense correspondence using the informative and robust SIFT feature. The authors comput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008